
THIS MONTH....
--
OPEN SUB() - Comments
--
SUBSCRIPTION INFORMATION
--
E-MAIL TO THE MAGAZINE
--
CORRECTIONS
--
CONTEST
--
LIGHT HOUSE FILE SYSTEM - ad
--
VB DOS KICKSTART - Visual Basic for DOS - Beginner Level - Anthony Seo
--
PROGRAMMER'S PIT BBS - ad
--
VISUAL BASIC DEPOT - Visual Basic for Windows - Advanced Level - Mark Wisecarver
--
STARTING OUT WITH BORLAND OBJECT VISION - REVIEW - L. John Ribar

--
MORGAN SUPPLY - ad
--
BBS WATCH
--
TIPS, TRICKS AND GOTCHA'S
--
Master\sofT Software Publishing - ad
--
BASIC BEGINNINGS - Visual Basic for Windows - Beginner Level - Greg Walters
--
ABOUT THE AUTHORS
--
TRADEMARKS
--
END SUB() - Closing Thoughts

OPEN SUB()
Well, I made it.    The first issue got out on-time.    Only by hours, but it DID get out on time. 
The response has been very encouraging.    People from all over have been downloading
the magazine from the various boards that have elected to carry it.    I even have had calls
from as far away as Sweden on my own board to pick up the magazine.    No one has sent in
any subscriptions yet, but I haven't given up hope yet.    In addition, the comments about
the magazine are with out exception, very favorable.    The only complaint that I have
received (as of January 20) is that the archive is too big.    You can read many of the
comments in the E-MAIL section.    All in all it looks like the magazine will be well accepted.
I did, however, make a couple of goofs.    Most of the big ones can be found in the
corrections section.    There is one big one that I would like to address here.    What I forgot
in my frenzy to get the magazine out, was to explain to all that the Windows 3.1 Help
"edition" is more than just a way to present the text.    The Help utility that comes with Win
3.1 is fully a hyper-text viewer.    Some readers already know that, but many don't.    So let
me spend this time giving you an overview of using this special electronic edition.    Many of
these things were not in the first issue, but have been added into this one.   
When you see the green solid underlined text,

it designates that by clicking here, you will be presented with that topic or section.
When you see green broken underlined text, like this, it lets you know that there is a PopUp
box waiting for you to click on it.    Go ahead.    Try it.
The browse buttons at the top right of the help toolbar

 will move you from one article/topic to the next either forward or backward.
The search button...

allows you to use a keyword search to find the general article you are looking for.    When this
button is pushed, you will be presented with a screen similar to this:

As you can see, instructions are included.
If you find something that you want to include in your program, you don't have to print it out
and re-type it.    Click on the "Edit" menu item, and select the Copy option.    This puts the
article/topic into a box that you can mark the section you want and then paste to the
clipboard.    From there, paste it into your application and you are home free.    For those
using VB-DOS, you can paste to notepad and then save it as a text file that can be imported
later.
I have also included a couple of special "hot-spot" graphics that you will see from time to
time.    These are included where a tip or some special information is called for, but there
isn't any specific short text to use as a link.    Here is one you will see this issue.    Go ahead
and try it.

Finally, if you want to print out a specific article/topic, you can do so by selecting
[F]ile/[P]rint Topic from the menu.
Now, you should have a pretty good idea of how to use this version of the magazine.    We
are looking for a good hyper-text reader for the DOS world, since there are a number of you
out there who can't or won't run Windows.    So for all you DOSer's, hang in there.    We
REALLY haven't forgotten you.

END SUB()
Well, we come to the end of another issue.    I must admit that the last two months have
been a REAL challange.    Trying to get a full issue out in 2 weeks was hard, and I let too
many things slip on the BBS.    Hopefully, now that I have a full month to get things done, I
can spend more time with the board and my family.    I can also spend some time learning
the help system better so we can look even better for you.
We are still looking for other authors to help out.    We need a Visual Basic for DOS
Advanced author, an Object Vision Advanced author and both levels for Microsoft Access.   
If you feel you can contribute in these areas, please let us know.
We also would love to get articles from you.    Code snippets, some of your tricks, what ever.
You don't need to be a professional author.    Please help us out.

Coming up next month...
Microsoft ACCESS Review

Visual Basic for DOS Review
New Object Vision Beginner's Column

More from Mark, Tony and Greg
and much much more!

Thanks for reading and see you in March...

Greg

SUBSCRIPTION INFORMATION
Basically Visual Magazine is published monthly and distributed via BBS Systems.   
Basically Visual Magazine is a shareware concept magazine.    If you find the magazine to
be useful, the price is $20.00 US. Funds per year.

To subscribe, please send check or money order to:
BASICALLY VISUAL MAGAZINE
PO. BOX 1214
YORK, PA USA 17405-1214

The success of the magazine depends on you contributing.

E-MAIL TO THE MAGAZINE
We got a great deal of mail this last two weeks about the magazine.    Here is just some of
the responces...
===
=========

Greg,
[The magazine] Looks good!    Just got back this afternoon and took a look at it.    I applaud
your use of the Windows help compiler - it makes a very flexible format.
Since you can cut and past from the help file into VB, anything you publish that contains
source code can easily be brought into the programming environment without having to
resort to some intermediate file format.    GREAT!
One problem that I see - SIZE.    Most networks that I know of will balk at sending around a
half-meg file, especially since the information inside is mostly redundant.    How do you feel
about distributing only the .HLP file?    Since everyone can print help topics (and since the HP
and Epson print files are so huge) how about leaving the .PRN files out completely?
I realize that the page headers and table formatting won't look as nice, but the guy sitting
out there with a C. Itoh dot matrix or HP Deskjet printer (or any of the other hundreds of
Windows supported printers) won't be too happy to find that he just downloaded a massive
file of which only 7% is useful.
My suggestion is to break out the .HLP file and only distribute it and adjust the readme.   
Jim Harre (sent via Netmail)
{Jim,
        While it is true that most of the people that can use the magazine are already on
Windows, there are many people out there that can't or WON't run Windows.    Many of the
people who use VB-DOS don't have Windows.    That is why I decided to include the print
image files.    I had to make a determination as to the type of printers we would support.   
The two most supported printers in the world are the HP laser format and the Epson Dot
matrix format.    Until I can find a DOS viewer good enought for our tastes, I feel that I MUST
include the print image files.
          Any board that distributes the magazine may, at their choice, include all three versions
or any of the three.    This issue is being distributed as three files so the boards can choose
which ones they want to support.

Greg}

===
=========

Hi Greg,
Just took a look at BV1 and wanted to let you know how impressed I was with the quality and
professionalism evident in this premiere issue. Well done!...
I was wondering how I'd go about putting an add in the next issue for my BBS?
Also had 2 suggestions. First, have the general release only include the .hlp file. The size of
BV1 prevents most users here from downloading it, I made a second archive with just
the .hlp file (hope you dont mind) and that version is being downloaded regularly. If the user
needs to print a section, this can be accomplished under the Win help facility. In all
likelihood, users would only want to print a particular section and not the entire magazine.
Second suggestion, have a compressed version of your file list available for freq rather than
the raw listing.
Well, that's about all, but keep up the good work! :-)
Mead Himelstein (from NETMAIL)
{ Mead,
          Thanks.    In answer to your second question, the cost of a BBS ad is $10 per issue or
one article per ad.    (Maybe this will get some people to send in articles :-))

          As for your first suggestion, please see my first reply above.    As to the second, it is
done.
        Greg}
===
=========

What is BV Mag?    How can I get a copy?
Gregory Chang    (on the Visual Basic Message Echo - FIDONET)
{Gregory,
          Many boards are picking up the magazine.    In fact, thanks to Mark Wisecarver, you can
also find the latest issue on CIS.    If you are having problems finding the magazine, contact
one of the boards shown in this issue.}
===
=========
Hi Greg
Do you know of any UK based BBS that carries your mag as I would be very intrested in
reading a copy, I am sure many others over here would be too.    I do not feel ocnfident
enough in BBSing to try to get it 'direct' via netmail.
Best wishes with your new project.
Janet.
Janet Barkaway (on the Visual Basic Message Echo - FIDONET)
{Janet,
        I don't know of any BBS's in the UK that currently carry the magazine.    If there are any,
let us know and we'll post it here.
}

===
=========
More next month!

CORRECTIONS
Last issue, I started our rating system by using an eye bitmap.    What I forgot to do was tell
you what the rating system was...
The minimum rating is 1 eye and the maximum is 5 eyes.    There are many things that are
taken into consideration when awarding points to a product.    In no particular order, they
are...

1) ease of use
2) documentation
3) size of the program vs what it does
4) ease and options available in installation
5) price
6) gut feelings.

The rating system has been set down by the magazine, but the rating given is that of the
reviewer and the magazine WILL NOT override that rating.
We try to assign reviews to people who actually use the product or similar products.    This
way, you will get a more honest review that you can really use, and what you can expect ...
both good and bad.

Last month, I said that we would have a review of Visual Basic for DOS and a disk labeling
program in this issue.    I under-estimated the amount of time required for these articles and
I just flat ran out of time.    I just couldn't finish them before we "went to press".    They WILL
be included in the March issue.

LIGHTHOUSE FILE SYSTEM

The Light House is located in Flatrock, MI and is a Programmer's support system. 
While it is not a BBS in the standard sense of the word, it is a very good place to
get any kind of Visual Basic support files.    The Light House is a FREE system that
accepts NO MONETARY CONTRIBUTIONS.    If you have FREQ abilities, give us a
call.

The Light House is a PKWARE Liscensed distributor.
For more information on how to gain access to this system contact Mark

Wisecarver at:
FIDONET 1:2380/410 USR HST 14.4 COURIER

CIS: 72400,505 (All Microsoft forums)

VB DOS KICKSTART
Visual Basic for DOS - Beginner's Level

BY Anthony V. SEO
Learning to crawl

          The intent of this column is to help new users of Visual Basic for DOS (hereafter referred
to as VB/DOS) get familiar with the IN's and out's of the package.    If you are a long time
Basic programmer, just making the move to the forms driven environment of VB/DOS or
even a novice, starting out for the first time, this column hopefully will be of some interest to
you.    I am going to make the assumption that the readers at least have some familiarity
with some of the Basic keywords.
          In the last installment, we started reviewing some of the differences between the
sequential programming methods used with the Basic language over the years and the
Forms driven programming style of Visual Basic.    We created a form called DATA1.FRM, that
we used a simple example to illustrate some of the basic techniques of VB/DOS.    This article
will expand on that and introduce a couple of new items as well.
          First fire up VB/DOS and load the form called DATA1.    In the box titled Project on the
right hand side of the screen, you should see DATA1.FRM followed by the word data1 in
parenthesis.    Click your mouse one time one the Data1.FRM line to highlight it, then click
the Form button to switch back to the Forms Designer.    Using your mouse go to to the Tools
list and again select the tool called Text Box.    This time the box that appears will have the
word Text2 in it.    First use your mouse to drag the Text2 box to where you want it on the
screen.    Then using the Properties menu, find the line that says Text and delete the word
Text2.    Pretty much the same as last time.    Now notice that it is hard to tell what box is
what.    That calls for a new object called a Label.    The label is a text box that displays what
is entered into the Caption property.    So Click on the Label tool, and then using the Property
menu, change the caption from Label1 to Month.    Then drag it along side of the first Text
box.    Next add a second label, change the name to Year, then move it along side of the
second text box, which we just added.
          Now we have the beginnings of a real data entry form.    If you have been following the
script, there should be two command buttons, two text boxes, and two labels.    Now press
F12 to save the form and get to the Event Procedures menu.    First thing we want to do is to
setup the same kind of data validation that we used in the Text box, where we checked for a
number between 1 and 12, but change it so that we can test for a range of years to be
entered.    So at the Event Procedures menu, click on Text2, then select LostFocus.    Then
enter the following.

SUB Text2_LostFocus ()
IF Text2.Text = "" THEN

oops% = MSGBOX("Year not entered", 5, "Warning")
 SELECT CASE oops%
 CASE 4
 Text2.SETFOCUS

CASE 2
Command1.SETFOCUS

END SELECT
END IF
If VAL(Text2.Text) < 1992 Or Val(Text2.Text) > 2002 Then

oops% = MsgBox("Invalid Year entered", 5, "Warning")
SELECT CASE oops%

CASE 4

Text2.Text= ""
Text2.SETFOCUS

CASE 2
Command2.SETFOCUS

END SELECT
END IF
Command2.SETFOCUS

END SUB

SHORTCUT: Press F2 to display a list of all of the subroutines.    Go to to 
Text1_LostFocus, then using the mouse or the Shift and the arrow keys,
highlight everything under the subroutine name, and to just above
where it says END SUB.    While it is still highlighted, press
<CTRL><INSERT>.    This will copy the text.    Then jump back to the
Text2_LostFocus subroutine and put the cursor under the first line, then
press <SHIFT><INSERT>.    This will paste the text into this area.    Then
just make the necessary changes.

          Now you also have to make a change to Text1_LostFocus.    At the end of the routine,
where it says Command2.SETFOCUS, between the END IF and END SUB, change that to say
Text2.SETFOCUS.    This means that after we enter a month, that pressing <TAB> will take us
to the Text2 box.
          So now we have a form that should allow us to enter a month (1 - 12) and a year (1992
- 2002).    Now for some fancy stuff.    Sometimes it can be hard to follow the cursor around
on a form, especially a crowded one.    So, we are going to use the GOTFOCUS event
procedure and a new command word called BACKCOLOR.    All of the properties available to
the Tools (or objects), such as color, event size and position, can be manipulated within the
program itself.    BACKCOLOR simply refers to the item's background color.      To get started,
press F12, then select the Text1 object, then click on the GotFocus event.    A GotFocus event
occurs any time an object is selected, or is now the current cursor position.    Then type the
following:

SUB Text1_GotFocus ()
Text1.BACKCOLOR = 14
Label1.BACKCOLOR = 14

END SUB

Now what will happen is that when you click on the Add button, the background color of the
Text1 box and the Month label, become bright Yellow.    Do the same for Text2_GotoFocus.   
Then at the top of the Text1_Lostfocus procedure (where we did the month validation), insert
the following lines:

Text1.BACKCOLOR = 7
Label1.BACKCOLOR = 7

Then do the same for Text2_LostFocus, changing the Text1 and Label1 to Text2 and Label2.

What happens here is that when the Text1 box is selected, it is yellow, when you press tab to
move to Text2, Text1 turns back to gray, and Text2 turns yellow.    You can use the same
principles with the Command buttons as well.
          This ability to change the property of an object is a very important tool in VB/DOS
programming.    For those of you with the Professional Edition of VB/DOS, the SETUP.MAK,
which is a nice software installation tool, (Microsoft style, of course).    Take a close look at
how the properties of the various boxes, color size, shape, etc., are manipulated.    One

working example of this would be to have the name of the month that we selected in Text1,
to appear in another box, which does not become visible until we enter a valid month.    For
starters, go back to the DATA1 form and add another Text box (should be Text3).    Delete the
Text3 line from the Text property.    NOTE:    You can easily do this at the start of the program,
by setting Text1.Text="", etc.    However for the sake of speed, and program size, I prefer to
set as many of the properties as I can in the Form Designer.    Then from the Property menu
select the Visible property, and change it to False (for Text3).
          Press F12, then go back to the Text1_LostFocus event.    What we will do here is build a
separate subroutine to assign the name to the month.    Then we call that subroutine and
make Text3 visible with the correct month.    First build the subroutine.    Type SUB
month_name (m%, mname$) and hit enter.    A new subroutine will be created (still part of
the Data1.FRM), then enter the following:

SUB month_name (m%, mname$)
SELECT CASE m%

CASE 1
mname$ = "January"

CASE 2
mname$ = "February"

CASE 3
 mname$ = "March"

CASE 4
 mname$ = "April"

CASE 5
mname$ = "May"

CASE 6
mname$ = "June"

CASE 7
mname$ = "July"

CASE 8
mname$ = "August"

CASE 9
mname$ = "September"

CASE 10
mname$ = "October"

CASE 11
mname$ = "November"

CASE 12
mname$ = "December"

END SELECT
END SUB

          Press F2 and go back to the Text1_LostFocus subroutine.    Right before the line that
says Text2.SETFOCUS (which should be at the end of your routine).    Type in the following:

m% = val(Text1.Text)
Call month_name (m%, mname$)

Text3.Text = mname$
Text3.VISIBLE = -1

          Now run the program.    When you type in month number into Text1 and <TAB> or click
on Text2, the Text3 box with the month name should appear.

          That's all for this issue.    Next time we will start working with the concept of a Project,

and the basics of working with multiple forms.    Remember that if you have any questions or
suggestions (except for an early expiration), please send them care of this magazine.    Till
the next time.   

(Copyright 1992, Marketing & Automation Resource Comp, All rights reserved.)

THE PROGRAMMER'S PIT BBS
Where can you ALWAYS find the latest issue of Basically Visual Magazine?    Where can
you find ALL the back issues of Basically Visual Magazine?   

The Programmer's Pit BBS - Home of Basically Visual Magazine, that's where.
===
==
      (717) 845-2725        (717) 845-2725        (717) 845-2725        (717) 845-2725
===
==
We have 700+ MEG ONLINE and over 2 GIG off-line of applications, program source, games
and information files.    We are a member of FIDO and SPEAKEASY NETWORKS.    We carry
program source for:

Visual Basic
Pascal
C / C++
Modula-2
Assembly
AND MORE!

23 hours a day!    7 days a week!

If you have FREQ abilities, the magic filenames are:

FILES ALL ON-LINE FILES LIST
NEWFILES ON-LINE FILES LESS THAN 15 DAYS OLD
MAGAZINE THE LATEST ISSUE OF BASICALLY VISUAL MAGAZINE
BV-HLP Windows 3.1 Help version
BV-HP HP Laser Print image version
BV-EPS EPSON Dot Matrix Print image version
CD-ROM FILE LISTS OF CD-ROMS
         
ALL ON-LINE FILES CAN BE FREQ'ed.   
SEND FILE REQUESTS FOR OFF-LINE FILES.
FIDONET ADDRESS - 1:270/612
SPEAKEASY ADDRESS - 18:18/10

VISUAL BASIC DEPOT
Advanced Visual Basic for Windows programming

BY Mark Wisecarver
Development made easy (well, easier)

Welcome back gang. In Issue One of Visually Basic Magazine I mentioned that this column
would be going into some of the new features in Visual Basic 2.0, (a revolutionary product),
in this the second press release of the Visual Basic Depot. So throw another log on the fire
and kick up your slippers while I go into some of those new features for you right now.

One of the best enhancements is a hidden change in version 2.0, and that being the smaller
and faster applications you create with the new VB. Code is loaded on demand rather than
all at once which was the case with the earlier version, allowing your applications to load
and run much faster. There is also a new form property, ClipControls, which eliminates the
creation of control masks, speeding up the form painting event in your application. I'd go
into more on the properties of the Form.ClipControls here but Microsoft has included a very
good help base with version 2.0 which explains the ClipControls in much detail. (which
allows us to cover more items in this issue)

Arrays are much improved also. You remember the horrors of the limitations for Huge arrays,
well now they are gone, limited only by available memory. Arrays can now be declared in
Type declarations for data structures also. Plus there is the addition of the Preserve option in
the Redim statement which let's you change the size of a dynamic array without losing its
contents. You can now therefore read from a file into a string array, re-dimensioning the
string array as you go, without having to know ahead of time how large to make the array.
Application capacity has been greatly increased. Huge arrays blow the limits off application
size, and string space is limited only by available memory. Also, strings can be compared to
a pattern using another new function called Like. If the given string matches the pattern
string, then this function returns the Boolean value True, otherwise it returns False.

Probably the first thing you will notice about VB 2.0 is the new Properties Window. It is
scrollable, sizeable, and you can hide it out of site if you don't need it. All at your leisure.
Debugging is enhanced with Watch options to keep tabs on the contents of variables and
properties, and the value of expressions. You can set multiple breakpoints, and single step
through your program.

Microsoft also added another new feature, AUTOLOAD.MAK, which can be customized to load
only the files that you want to start each new project with. Another new keyword, Private,

makes subprograms and functions visible only to routines in the same source code module.

Multiple instances of an application are now allowed. The App.PrevInstance property is used
to determine if a previous instance of an application is already running. Another new
keyword, Me, refers to the current form when a form name is passed to a function or
subprogram. If you are creating MDI applications, (Multiple Document Interface), there is a
new method available to you called ZOrder, which sends controls or forms to the front or
back in the overlapping order that you assign to them.

Visual Basic 2.0 also shares a new concept in variables. called variants, with Microsoft's new
Windows database Access. In previous versions of BASIC, variables defaulted to single
precision floating point values if not explicitly declared otherwise. Now, variables default to
the new variant type. A variant adjusts automatically to whatever is stored in it.

It is now easy to select and move a group of controls on a form by clicking and dragging a
rubber band type rectangle over the face of the form.

Among all of the new controls that come with both the Standard and Professional versions
my favorite among them is the CMDialog control which creates five types of commonly used
dialog boxes in a style consistent with other Windows applications. With the Action property
you set the type of dialog to be created, and other properties allow you to customize any of
the dialog boxes as you desire.
The following table lists the Action settings:
0    No action
1    File Open Dialog Box
2    File Save Dialog Box
3    Color Dialog Box
4    ChooseFont Dialog Box
5    Printer Dialog Box
6    Invoke WINHELP.EXE

The Professional edition also comes with a very good Help compiler that uses the Rich Text
Format (RTF). All control and form objects have a new property called HelpContextID. The
setting of this property matches with a section in your help file, letting the Windows Help
engine pop up context sensitive help for whichever control has focus in your application.

All of this started in 1991 when Microsoft introduced Visual Basic. The Visual Basic
programming system packaged up the complexity of Windows in a truly amazing way.
Combining the proven capabilities of Basic language with the new visual design tools. The
initial release of Visual Basic was a runaway success, selling tens of thousands of copies and
winning awards from most of the major computer magazines. Now with the release of Visual
Basic version 2 we can add these important new strengths and features to the list:
- Improved performance
- New properties, events, methods, and keywords

- New debugging tools
- Greater flexibility for declarations
- Multiple selection of objects in forms
- Color-coded program elements
- Support for 256-color displays and improved graphics support
- Support for advanced Windows features such as OLE (object linking and embedding)
    and    MDI (multiple document interface)
- The addition of ODBC (Microsoft open database connectivity programming interface.

There are a lot of new features in both the Standard and Professional editions of Visual Basic
version 2.0, and I could keep writing on and on about them but it's time to get into some
programming for this months readers. One thing is obvious, Microsoft listened to it's
customers and came out with one of the best upgrades we have ever seen.

And now let's get into this months questions from our readers.

BG: Mark, I think there must be a way to drag controls on a form during run-time but for
some
 reason I can't figure it out. Can you help? signed desperate
MW: Dear "desperate", truthfully I'm glad you asked this question. Many    VB programmers
may
have heard or have felt there was a way to do exactly what you have asked, and it's easier
than you
think. Load up Visual Basic cause you are going to love this example.
First let's have some fun. Start a new form and place a Command button on it. Now the only
change I want you to make is from the Properties Window. Change the DragDrop property of
Command1 to Automatic and then start the form. Now use your mouse to drag the
Command button. Something very interesting is happening right now. The Command button
can be moved during runtime but jumps back to its original location. This is because you
have not moved the Command button, you have only dragged its outline around on the
form. To actually move it, add a Move method to the form's DragDrop procedure.
Sub Form_DragDrop (Source As Control, X As Single, Y As Single)
Source.Move X, Y
End Sub
Now the DragDrop event occurs whenever a control is dragged over a form (or other control)
and dropped. The Source argument contains the name of the control (the Command button)
that was dragged over and dropped on the form. The X and Y arguments contain the
location of the mouse pointer when the control was dropped. The Move method is used here
to actually move the control to the new coordinates. Now run the application and notice
again what happens to the control that is being dragged. The control being dragged does
not respond like an object that was dragged and dropped. This is because the upper-left
corner of the control is moved to the X, Y location supplied by the DragDrop procedure.
Therefore the X, Y location is not the upper-left corner of the outline being dragged around
on the form but the location of the mouse pointer on that outline.
Interesting isn't it? I'm sure by now you are aware that we need to chance the coordinates
that the DragDrop procedure is using if we are going to do this correctly. We are going to
have to capture the X, Y coordinates of the MouseDown event on the control and then
subtract that location from the X, Y coordinates in the DragDrop procedure.
'Place this code in the form's General procedure and define the variables we need for the
offsets.
Dim XOffset As Single    'This is for later use
Dim YOffset As Single    'Again, for later use
Const StartDrag = 1
Const Drop = 2
'Now place this code in the controls MouseDown procedure

Sub MyControl_MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)
'Now we need to store the location of the MouseDown event and initiate the Drag method.
Sub Form_DragDrop (Source As Control, X As Single, Y As Single)
Source.Drag Drop 'Remember we defined a constant for this earlier.
Source.Move X - XOffset, Y - YOffset    'Here we are calling the variables we defined.
End Sub
This procedure ends the manual dragging and actually moves the control for you. The
procedure then offsets the move by the location of the initial MouseDown event of the
control. Remember to change the DragMode of your control back to 0 - Manual. (The
default setting)
Now run your application again and DragDrop with your control. Allot better isn't it? This
example should be of use to many of the programmers reading this magazine, and this type
of user control over a well developed application gives it a very professional appearance.
Remember, most people buy a car on looks and feel, not driveability. The method I have
shown you will work with any control that has a MouseDown event, which includes list boxes,
labels, file list boxes and picture boxes. Now remember, you can insert a custom icon in your
controls DragIcon property. The custom icon is always centered on the mouse pointer so you
can manually insert the size of the offset.
Well, that's it for my article this month. Next month I promise to do allot less verbiage and
allot more coding. Get those entries in for the Visual Basic for Windows contest, the deadline
for all entries is March 15th and the winner will be announced in the April issue of this
magazine. Until next month, Happy programming.
   
Mark Wisecarver

Master\sofT Software Publishing

Publishers of Engineering & Scientific Software is looking for software titles to
add to our catalog.    We are looking for quality software that meets specific needs
in the professional community.    If you written a package or are thinking about
writing a package, feel free to contact us.      Even if it might have market potential
of only 200 or less copies, let us know.    We offer help with software design and
documentation, and have a solid royalty program.    Write to us at

Master\sofT
P.O. BOX 579

Camp Hill, PA 17001

Or call us at (717)-763-5772 Voice, (717)-763-4419 BBS or Fidonet 1:270/711

BASIC BEGINNINGS
Visual Basic for Windows - Beginner's Level

by Greg Walters
STEPPING BACK

Last month we did a very simple program, but we didn't talk much about the processes
behind it.    So, let's step back a bit and talk about programming in general.    When we
finish this month, we will create a traffic light simulation.    I know that this sounds silly, but
the principles behind the program are sound.
The first thing you should do when writing a program, is to try and understand as much
about the task that you want the program to do as possible.    If you can do it on paper, you
should be able to write the code for the program.    With this in mind, let's look a our
simulation.

Here is a simple street layout.    Traffic flows North/South and East/West.    The blue squares
are traffic signals.    There are no turn signals for this simulation.    [Editors note:    For
those in England and other countries that drive on the left, look at this in a mirror.
:-)]
Now let's look at the timing of the lights...

As you can see, the E/W side light is red thru both the green and yellow lights for the N/S
side.    Only when the yellow cycle is over, do the lights change from red to green on the
other side.    Then the whole thing starts over again.    We can use this fact in our program.   
We will need two timing cycles.    One for green and one for yellow.    Since the red light time
is a sum of the two of these, we don't really need a red cycle.    (Remember...this is a VERY
simple simulation.    There are many traffic systems where the light cycles are different.)
We also need a flag of some sort that marks when the N/S side is active (Green&Yellow) and
one that marks when the E/W side is active.    Thankfully, this is easy.    We can us a BINARY
switch.    If the switch is TRUE, the N/S side is active.    If the switch is FALSE, the E/W side is

active.
Now this sounds great, but what does it mean for the program?    Well, it means that we
need a Binary variable for our N/S flag and we need two time intervals, one for green and
one for yellow.
Since Visual Basic doesn't support a Boolean (Binary) variable directly, we use an INTEGER
type of variable.    An Integer is a whole number between -32,768 and 32,767.    Integers
can NEVER have fractional parts.    An integer type variable is useful for timer intervals,
counters and Binary variables.
So, now we have three things our program will need...two timer intervals and a Binary
value.    Now that that is decided, we need to decide what our program will actually do.
We want our program to show two traffic lights...one for the N/S side and one for the E/W
side, showing the proper lights, switching from green to yellow to red and back to green.   
We should have a way to start and stop the simulation.    We also should have a way for the
user to find out a little bit about the program, an about box is standard in Windows
applications.    There also should be an exit button, so the user can quit the simulation.
Here is a VERY simple flow chart of how the main program loop should run...

Now for the real work of our program.    How should the timer event work?    In fact, what is a
timer event?    We touched on that last month, but let's go into it a bit further.
When we include a timer into our program, we can set the amount of time that goes by until
the system flys a red flag that say's "THE TIMER HAS GONE OFF!!!    DO SOMETHING!"    It's
like an alarm.    We set the amount of time between these "flags" by setting the interval
property in the timer control.    This time is expressed in milliseconds. (1000 milliseconds = 1
second)    When the timer event occurs, the system looks in the timer subroutine to see what
to do.    Here is the flow of the timer event...

Notice that the two sides of the flow chart are exactly the same with the exception of the
line that makes one side or the other the active side.
Where do we go from here?    Well, we have to design our forms and then write the actual
code that glues the controls and forms together into a single application.    For this program,
we will use two forms.    One for the main simulation and one for the about box.    (No, I didn't
forget the about box click on the first flowchart...Just ran out of room for the graphic.    It can
be put before the "Exit Button Click?" box.)    Let's do our main form.

You will need to place two labels (shown as "N/S" and "E/W") and make the CAPTION
property N/S and E/W.    Next place 5 image controls.    Place them as shown.    Change the
NAME and PICTURE properties as follows:

NAME PICTURE WHICH IMAGE
======= ========= ================
N_S Trffc10a.ico Far Left Image
E_W Trffc10c.ico Next Image to the right
Green Trffc10a.ico Top right Image
Yellow Trffc10b.ico Center right Image
Red Trffc10c.ico Bottom right Image

(Now, I know that there is a great scream from those who are super-duper programmers
out there, that there is a "better" way to do this...but remember, we are teaching
beginners.    We'll get into that later)
Next place 3 control buttons on the form and change the CAPTION and NAME properties as
follows (top to bottom):

NAME CAPTION
====== =============
Toggle Start Simulation
About About
EXIT Exit!

Place a timer control on the form.    Change the VISIBLE property of the three image
controls on the right to FALSE.    Finally, change the CAPTION property of the form to
TRAFFIC LIGHT SIMULATION and change the NAME property to TRAFFIC.
Now let's create our About box.    This is a simple form with two labels and one control
button.    Set it up like the picture below and change the NAME property to ABOUTBOX.   
Make the form background Blue and the label foreground white.    The label BackStyle
should be made Transparent.    Then type the text shown into the Label controls.

Now we are almost ready to write the code to glue all of this together.    Notice that, in the
first flow chart, there is a reference to a Start Button Click and a Stop Button Click.    In our
form, however, we don't have enough buttons...right?    WRONG!    We will use the same
button for both.    That's why we named the first button "Toggle".    Let's look at the logic
behind this.    We will need another BINARY flag.    One called ToggleFlag.    When we start the
program, we will set this flag to FALSE.    When the user clicks on button #1, we will change
this to TRUE.    When the user clicks on the button again, we will reset it to FALSE.    We will
do some other things in the same code, but we'll look at that in a bit.    Now we start coding. 
On the PROJECT window, highlight the TRAFFIC form and click on the "View Code" button.   
This brings up the declarations section of our code window.    Here is where we will declare all
the variables used in the program.    We need to make all the variables available to our main
form so we have to declare them as SHARED.    We use the DIM keyword to reserve memory
space for them.    Type the following...

DIM SHARED ToggleFlag As Integer
DIM SHARED NS_Go As Integer
DIM SHARED LightState As Integer
CONST GreenTime = 5000
CONST YellowTime = 2000

Remember eariler I said that we need a binary flag that will show which direction is active? 
That is what NS_Go is.    We have already talked about ToggleFlag, but what about this
LightState variable?    This is used to give us a quick way to tell if the light is green or not.   
A "1" here says that the light is green.    A "2" says it is yellow.
The CONST keyword defines a CONSTANT value to a name.    Once declared, you can't
change it from inside the program.    I've set the length of a green light to 5 seconds and
the length of a yellow light to 2 seconds.    Not real world, but you would have to wait too
long to see anything happen.    Feel free to change these numbers as you wish.   
REMEMBER 1 second is 1000 milliseconds.
Now let's set up the FORM.LOAD procedure.    When the program starts, this routine will be
run.    We will use this to set the defaults for our program.    Click on the "Object" pulldown
and select Form.    Make sure you are in the FORM_LOAD procedure and type...

Timer1.Enabled = FALSE
Toggle.Caption = "Start Simulation"
ToggleFlag = FALSE

The first line turns off the timer.    The second line makes sure that the caption of our first
button is set to "Start Simulation".    The last line sets ToggleFlag to FALSE.    Now go to
Toggle object and in the Toggle_Click procedure type...

IF ToggleFlag = FALSE Then
ToggleFlag = TRUE

Toggle.Caption = "Stop Simulation"
Timer1.Interval = GreenTime
NS_Go = TRUE
LightState = 1
N_S.Picture = Green.Picture
E_W.Picture = Red.Picture
Timer1.Enabled = TRUE

ELSE
ToggleFlag = FALSE
Timer1.Enabled = FALSE
Toggle.Caption = "Start Simulation"

END IF
From top to bottom...
We check to see if the ToggleFlag variable is set to FALSE.    If so, we set it to TRUE.    We
then change the CAPTION to "Stop Simulation".    This gives us the two buttons in one.    We
set the timer interval to the GreenTime constant we defined eariler, set the NS_Go flag to
true, set the LightState to 1 (green).    We then make the image controls show the pictures
we want.    The N_S image to Green and the E_W to Red.    We do this by assigning the
PICTURE property to that of the PICTURE property of the hidden control we want to show.   
Of course we could load the picture off of disk, but this takes time and we would have to
include the pictures when we distribute the files.    This way is much quicker and easier on
us.    Next we turn on the timer to start the simulation (Timer1.Enabled = TRUE).    If the
ToggleFlag was set to TRUE, then we ignore all of that and set it to FALSE, turn off the timer
and reset the caption to "Start Simulation".
Now let's do the code for the other two buttons.    For the About_Click procedure...

AboutBox.Show
causes the AboutBox form to be loaded and shown.    For the Exit_Click procedure ...

Unload ME
END

will unload the main form and end the program.
Now for the real meat of the program.    The Timer1.Timer function.    Type...

IF NS_Go = TRUE THEN
IF LightState = 1 THEN

LightState = 2
N_S.Picture = Yellow.Picture
Timer1.Interval = YellowTime

ELSE
LightState = 2
N_S.Picture = Red.Picture
E_W.Picture = GreenPicture
Timer1.Interval = GreenTime
NS_Go = FALSE

END IF
ELSE

IF LightState = 1 THEN
LightState = 2
E_W.Picture = Yellow.Picture
Timer1.Interval = YellowTime

ELSE
LightState = 2
E_W.Picture = Red.Picture
N_S.Picture = GreenPicture
Timer1.Interval = GreenTime

NS_Go = TRUE
END IF

END IF
Between the flow chart and the previous code, you should be able to follow this code by
now.    Finally, change to the ABOUTBOX form and under the Command1_Click procedure,
type...

Unload ME
Well, now you are on your own.    If you want to do more with this project, you might try two
things...

1) Add a Walk/Don't Walk picture to each side and change them at the proper times.
2) Allow the user to change the times for Green and Yellow.    (You will have to remove

them from CONST status, and assign them as variables.)
Below is quick access to the full source code.    You can copy the code to the notepad, save
it as a text file and pull it into VB that way.    The code is written to be under a subdirectory
named "TRAFFIC".    You will need to change this for the pictures if you don't use that
directory name.
Until next month...Have fun...
Click here for the Main form Code     

Click here for the AboutBox form code     

Click here for the Makefile code     

ABOUT THE AUTHORS
G.D. Walters
Greg Walters has been working with computers and programming since 1972.    He has
worked as a freelance programmer and a MIS Director.    He has written articles for Modules
& Definitions Magazine and has worked as a freelance technical editor for Osborne/McGraw-
Hill on a number of books.    He is currently a programmer for St. Onge Company in York, PA.
He is also the editor of Basically Visual Magazine and runs The Programmer's Pit BBS.

Mark Wisecarver
Mark is a senior programmer for a major corporation and lives in Flat Rock, Michigan .    He
has been a programmer since 1979.    He has background in Basic, GWBasic , Quick Basic,
Microsoft C, Assembly Language, JCL, Turbo Pascal and Visual Basic programming.    He runs
an online service free to all specializing in Visual Basic code.

Anthony V. Seo
Tony has been working in the personal computer area for 14+ years.    He has a background
in Basic and    Xenix/Unix programming.    Tony runs Marketing & Automation Resource
Company, a systems consulting company and software publishing company in Camp Hill,
PA.    He also runs the M.A.R.C. Information System BBS System.

L. John Ribar CCP
John has been a programmer since 1978, and is the author of several books, including C
DiskTutor and FORTRAN Programming for Windows from Osborne/McGraw-Hill.    He is
the president of Picasso Software Group Ltd., a software development firm in York, PA,
specializing in the creation of Windows-based applications and tools. John has written
articles for Computer Language, the C Users Journal, Modules & Definitions, and Micro
Cornucopia magazines.

TRADEMARKS
Microsoft, MS, MS-DOS, Visual Basic, Access are registered trademarks, and Windows is a
trademark of Microsoft Corporation.

Borland and Object Vision are trademarks or registered trademarks of Borland
International, Inc.

Basically Visual Magazine is a trademark of Gregory D. Walters.

Other brand and product names are trademarks or registered trademarks of their
respective holders.

TIP: Use your mouse to highlight the ClipControls setting in the properties window and then
                press F1 to call up Visual Basic's on-line help for this property.

Here is an example of a PopUp.    Extra information will be place here in the form of text and
sometimes graphics.

TIP:    When you see this button, press on it for more information about the subject.

Starting Out with ObjectVision
SOFTWARE REVIEW

by L. John Ribar

Basically Visual Magazine rating---

It's been a long time since the first version of ObjectVision hit the market.    It was billed as
the next great frontier in programming, using "objects" and "pointing" to develop programs. 
Programmers not required!

Well, the first few revisions didn't help OV's reputation as not needing programmers.    In
fact, most programmers I know didn't even want to play with it.    With the newest release of
Object Vision Pro (version 2.1), there may be more reasons to take a look.    And now, finally,
the market has caught up with the vision and promise that ObjectVision offered.

When you are getting started with OV, Borland has assembled a vast array of examples,
including a checkbook manager, address book, time tracking and billing, and more.    Just
look at the menu of demos, shown here:

The "Pro" version of OV includes Crystal Reports, a graphical report writing program, and
Turbo C++ for Windows.    Using these tools, a complete package can be written with
minimal coding.    OV is used to draw and "animate" the user screens, menus, etc.    Crystal
Reports allows you to quickly draw your reports.    Turbo C++ allows you to write your own
DLLs (dynamic link libraries), for any functions that OV forgot to include.    If you want to
work with OV, I would suggest the "Pro" version of the package.

The screens that can be created are quite exciting in the Borland demos.    Here is an
address book application, with pages that look like an address book!

And the following is an application for managing your recipes.    While these types of demos
can also be created in other environments, I was impressed that Borland included useful,
tasteful, and well designed applications to show off the capabilities available in OV Pro.

The Review

There are a lot of things I like about OV itself.    The designer is a little simpler than Visual
Basic.    There aren't many add-ons though.    There are direct connections BUILT-IN for
database management.    These include support for Paradox, dBase, ASCII, and other file
types.

If the database doesn't exist, you can create it inside OV.    Any of the file types are
supported.    Once the database is designed (in or out of OV), you simply point to the
database field that should be used for each of your screen fields.    The link is than complete.

But OV is not finished!    Once the database links are specified, OV will automatically add
Next, Previous, Top, Bottom, Update, Clear, Store, and other buttons to your window, if you
so desire (you get to pick which ones you want, if any).

In about 10 minutes, I built a simple document tracking program, shown below.    While it just

tracks the data, with no searching or reporting yet, we'll add those functions starting next
issue!

The big concept to get used to in OV is Event Trees.    In Visual Basic, you can assign
functions to button clicks, etc.    In OV, you build an Event Tree, that is a graphical
representation of what happens when a button is clicked, for instance.    This concept is
rather straightforward once you have dealt with other similar environments, but might take
a few minutes to understand if this is your first try.    As an example, here is the event tree
for the button marked "WRITE" in the document tracking program shown above:

This "tree" shows that an EVENT occurred, in this case a CLICK, which calls the function
STORE() with the name of the database.    This is about as difficult as it gets.

ObjectVision is coming into it's own, and with the addition of Crystal Report, to write your
reporting functions, and Turbo C++ to add in your own functionality (via DLLs), this should
become a serious contender in the Visual Programming Environment wars.

As a side note, there are other many other features available from the OV functions (used in
the trees), including DDE links, file manipulation, and graphic objects (the fire-breather in
my window above was included with IV, and added with a simple click!).

Probably the only thing I really don't like about OV is the way end-user applications are
distributed.    Unlike Visual Basic (and others), there is no "EXE" version of an OV file.    You
must distribute the run-time version of OV.    Depending on the type of license you buy, there
may be additional costs required for the copies that you sell.    Ask your Borland rep, as this
may change by the time you read this.

Coming Up

It's hard to review these types of products, because of the change in thinking patterns that
they represent.    In the next few issues, I'll walk you through the development of the
document tracking program I mentioned previously.    In this effort, we'll add outside
functionality (through DLLs), talk to other programs with DDE, and print reports with the
Crystal Reports program, all of which are included in the OV Pro package.    This should give
you a better idea about how well OV will fit into your needs as a programmer, non-
programmer, or manager.

[EDITOR'S NOTE:    John will be joining the staff of Basically Visual Magazine and
will be doing the Object Vision Beginner's column - Object Vision 101.    Look for it
soon!]

TIPS, TRICKS AND GOTCHA'S
I don't know quite what to call this first one, so we'll just jump into it.
Many times when I write programs, I have to access rather large databases.    When this
happens, the user ends up waiting sometimes 2-3 minutes or more.    I like to show that
something is happening, rather than just showing a box that says "Searching the
database...Please wait."    Users get impatient and think that the machine has hung up, when
in reality, it's just trying to get all the data in.    So I've come up with a short little re-usable
form that I use called Wait4It.Frm.    While digging through the WingDing font that comes
with Window 3.1, I found the clock faces, and got the idea that this would make a good way
to show something is happening.
The form is self-contained and calls to it are easy.    I've included a simple form to start the
Wait4It form and stop it either by the user pressing a control button or waiting for a 10
second timer event.    Here is what the Wait4It form looks like...

There are two Label controls...One named Prompt and the other named Clock.    The Clock
label box has a FontSize of 32 and a FontName of "WingDings".    There is also a timer that is
set for a 500 ms. interval (1/2 second).    The Prompt label box allows you to display what
ever you want to the user.    Here is the code for the Wait4It form...

Start with declaring a shared variable called showchar that is an Integer type

Dim Shared showchar As Integer

Next under the Form_Load routine, set the default value of showchar tochr$(183), then put
that value into the caption of the labelbox named Clock.

Sub Form_Load ()
 showchar = 183
 Clock.Caption = Chr$(showchar)
End Sub

Whenever a timer event occurs, add one to the showchar value and check to see if we have
overrun the clock faces.    If so, reset it to the first clockface.    Then show it by displaying that
as the caption for the label box called Clock.

Sub Timer1_Timer ()
 showchar = showchar + 1
 If showchar > 194 Then
 showchar = 183
 End If

 Clock.Caption = Chr$(showchar)
End Sub

Now to use it.    Here is the code for the demo program...
VERSION 2.00
Begin Form Form1
 Caption = "DEMO"
 Height = 4170
 Left = 1740
 LinkTopic = "Form1"
 ScaleHeight = 3765
 ScaleWidth = 2715
 Top = 1620
 Width = 2835
 Begin CommandButton Command2
 Caption = "Exit Demo"
 Height = 495
 Left = 720
 TabIndex = 2
 Top = 2505
 Width = 1215
 End
 Begin CommandButton Command1
 Caption = "Start Demo"
 Height = 435
 Left = 645
 TabIndex = 0
 Top = 1710
 Width = 1395
 End
 Begin Timer Timer1
 Interval = 10000
 Left = 1110
 Top = 1050
 End
 Begin Label Label2
 Alignment = 2 'Center
 Caption = "From Basically Visual Magazine Issue #2"
 Height = 480
 Left = 225
 TabIndex = 3
 Top = 3135
 Width = 2250
 End
 Begin Label Label1
 Alignment = 2 'Center
 Caption = "This demo shows the use of the Wait4It module."
 Height = 765
 Left = 345
 TabIndex = 1
 Top = 150
 Width = 1950
 End
End

First I setup a shared variable called toggle.    This is used for the "Start Demo" button.   

Dim Shared toggle As Integer

Here's what happens when the user clicks the button...

Sub Command1_Click ()
 If toggle = False Then
 toggle = True
 Command1.Caption = "Stop Demo"
 Wait4It.Prompt.Caption = "Searching Data..."
 Wait4It.Show
 Wait4It.Timer1.Enabled = True
 Timer1.Enabled = True
 Else
 toggle = False
 Command1.Caption = "Start Demo"
 Wait4It.Hide
 Wait4It.Timer1.Enabled = False
 End If
End Sub

As you can see, the Wait4It form is brought forward and the timer on that form is enabled,
starting it.    I also start a timer on this form just to end it in 10 seconds.    You can do this
from any code, not just a button click event.    To stop the Wait4It form, the timer.Enabled
property is set to FALSE, stoping the timer from doing anything else... and the form is
hidden.

Sub Command2_Click ()
 Unload Wait4It
 Unload Me
 End
End Sub

Sub Form_Load ()
 toggle = False
End Sub

Sub Timer1_Timer ()
 toggle = False
 Command1.Caption = "Start Demo"
 Wait4It.Hide
 Wait4It.Timer1.Enabled = False 'Stop the timer
 Timer1.Enabled = False
End Sub

The rest of the code is pretty self-explanatory.    Hope this helps someone out there.

HOW TO GET A SINGLE LINE TEXT BOX TO RESPOND TO THE ENTER KEY

It's not unusual to have a number of text boxes for data entry on a form.    One of the biggest
problems for new Windows users, is getting used to pressing the TAB key rather than the
ENTER key to move to the next field.
To get a text box to respond to the ENTER key is a simple matter. In the KeyPress method
simply add the following code...
               
Sub Text1_KeyPress (KeyAscii As Integer)

 If KeyAscii = 13 Then
 KeyAscii = 0 'reset the entered key stroke so we don't
 'get a beep back.
 Text2.SetFocus ' move to the next field
 End If
End Sub

If you don't want to make a call directly setting the next field to go to, you can fake Windows
into thinking the user pressed the tab key by using this routine instead...

Sub Text1_KeyPress (KeyAscii As Integer)
 If KeyAscii = 13 Then
 KeyAscii = 0
 SendKeys "{TAB}" 'Send a tab to go to the next control.
 End If
End Sub

MORGAN SUPPLY

BBS WATCH
This month, I thought that we'd look at some of the shareware and freeware code that's
available on various boards around the country.    This is just a small sample.    Contact your
local Visual Basic Support board for more information.

23PICK.ZIP          14476 11-16-92    Source code for Computer/Player game
256PB2.ZIP          28595 11-16-92    How to load 256 colors in VB picture box
3D4VB.ZIP            16741 11-16-92    3D effect subroutine library (FramesBoxesBorders)
3DDEM.ZIP            19763 11-16-92    Demo of 3D for VB
ABCSLOTS.ZIP        9872 11-16-92    Code for Slot machine game
ACCRD1.ZIP          30520 11-16-92    Code for Accordian Solitare
ADIALR.ZIP          23787 11-16-92    Code for Phone dialing program
AFFIRM.ZIP          39729 11-16-92    Code for positive thinking program
AHELP.ZIP              5468 11-16-92    Code for Windows help (Add Help)
ALARM-D.ZIP          4441 11-16-92    VB/DOS Alarm clock example
ALTFNT-D.ZIP      11455 11-16-92    VB/DOS Alternate font graphics example
ANIMT-D.ZIP          4398 11-16-92    VB/DOS Graphics animation example
APIHELP.ZIP        64818 11-16-92    Help with Win API
APIREF.ZIP            6962 11-16-92    Xref of Win API calls to their defining DLL
APIX.ZIP                  256 11-16-92    Gives instant access to Windows API declares
API_FU.ZIP          57270 11-16-92    Windows API call descriptions in cardfile format
APMMET.ZIP          24633 11-16-92    MetaFile library support (ViewPrint)
APPKT11A.ZIP      45386 11-16-92    Replacement for Program manager (Shell)
APPSHL.ZIP          33827 11-16-92    Application Shell (Includes mini Text editor)
AREACO.ZIP            9328 11-16-92    Area code program in VB
ARRANG.ZIP            6117 11-16-92    Code to arrange icons at bottom of screen
More [Y,n,t,=]? =ARRAY-D.ZIP          4278 11-16-92    VB/DOS Arrays example
ARRAY.ZIP              8641 11-16-92    Code for using API fast I/O routines
ASCII-D.ZIP          4008 11-16-92    VB/DOS ASCII graphics example
ASSOC.ZIP            12643 11-16-92    List associations between File/App
AUTOV10.ZIP        56889 11-16-92    Code for Auto maintenance
BAR-D.ZIP              3921 11-16-92    VB/DOS Pro Bar chart example
BARS3.ZIP            45857 11-16-92    BarCode printing code
BASECVRT.ZIP      13268 11-16-92    Converts numbers between bases
BC_CDK.ZIP          10224 11-16-92    Doc using BC++/IDE w/MS VBASIC Control Dev.kit
BDEMO.ZIP            24219 11-16-92    Code to create buttons containing pics
BINARY-D.ZIP        4439 11-16-92    VB/DOS Binary tree example
BITS_DLL.ZIP      13561 11-16-92    DLL supplies bit operations
BLNKBLNK.ZIP      45725 11-28-92    Screen Blanker/Out to lunch program w/Src (VB WIN)
BMPKIT.ZIP          25215 11-16-92    Routines for .BMP files within Visual Basic
BOOKS_VB.ZIP        4472 11-16-92    Text file listing 22 VisualBasic books
BTDEMO.ZIP          47413 11-16-92    Demo of 3D custom tools
BTRTES.ZIP          50984 11-16-92    Code to access Btrieve files
BTVB.ZIP                6524 11-16-92    Code for BTRIEVE files in Visual Basic
BURGLR.ZIP          15586 11-16-92    Examples of how to animate ICO's
BUTTON.ZIP          13169 11-16-92    Make differant buttons
BV0442.ZIP          36837 11-16-92    Huge array support for MicroSoft Visual Basic
BV0447.ZIP          45215 11-16-92    WINAPI.TXT: Win 3.0 API Declarations for VB
CALC-D.ZIP            4137 11-16-92    VB/DOS Windowed calculator example
CALLBT.ZIP          27260 11-19-92    Btrieve example code for VBasic
CARD10.ZIP          38842 11-16-92    DLL for Card game programming in VB
CBLIST.ZIP          32576 11-16-92    Custom Control to create groups in single control
CCFACT.ZIP          76250 11-16-92    Interactive development tools

CFIXVB.ZIP            7043 11-16-92    DLL to fix decimal places in currency values
CHK4EXE.DIZ          3911 12-12-92    How to check for instance of same program being loaded
twice
CHOYCE.ZIP          17977 11-16-92    Associate several programs with one extension
CLBOX1.ZIP            3567 11-16-92    Incremental list box
CLOCK-D.ZIP          3888 11-16-92    VB/DOS Vector graphics example
CLOCK.ZIP            23543 11-16-92    Another VB clock
CLP25610.ZIP      17910 11-16-92    BitMap viewer
CLPSIB.ZIP          15380 11-16-92    Set WS_CLIPSIBLINGS style bit for all forms
CLPTL.ZIP          194398 11-16-92    Save/Load/Print/Display from ClipBoard
CM01.ZIP              63579 11-16-92    Phone/Address manager in VB
COLCLIP.ZIP          9380 11-16-92    Select RGB Fore/Background pasting with Clipboard
COMDEM.ZIP          53951 11-16-92    Terminal program with code
COMPS.ZIP          120820 11-16-92    Store and retrieve real estate info
COPYDESK.ZIP        3997 11-16-92    Example of how to copy DeskTop to Visual Basic
CRC32-VB.ZIP        8742 11-16-92    DLL w/DOC's to check file CRC
CRISPY.ZIP          22855 11-16-92    Solitaire variation (Need VBCARDS.DLL from CARDS10.ZIP)
CURLIBM.ZIP        28440 11-16-92    Libraries of cursor animations. (Create you own)
CURSMAN.ZIP        11512 11-16-92    How to control the cursor in VB
CUSCON.ZIP          65500 11-16-92    3 custom controls (GaugeListState)
DB-D.ZIP                6978 11-16-92    VB/DOS DataBase example
DB_HDR.ZIP          13166 11-16-92    HowTo read dBase file structure for QEVB
DD1A.ZIP                6031 11-16-92    Drag/Drop how to for VB
DDEUTI.ZIP            7097 11-16-92    VB tool to test DDE code
DLAYDR.ZIP          11556 11-16-92    Code to time Mouse Drag/Drop event
DLL4VB.ZIP            6158 11-16-92    How to write simple DLL and use it in VB
DLLMGR.ZIP          15385 11-16-92    Load/Unload DLL,VBX,FON,EXE,DRV files
DODOS.ZIP            30344 11-16-92    Utility to provide runtime arguments for DOS
DOSBUT.ZIP            4282 11-16-92    Code for drop to DOS from Windows
DOSHEL-D.ZIP        4529 11-16-92    VB/DOS System shell example
DRAGFO.ZIP            5834 11-16-92    Code to drag a Form or TextBox
DROPDO.ZIP            6669 11-16-92    Code for Combo drop down box
DRWSCR.ZIP            7718 11-16-92    Text on how to direct printed text
DSCAN.ZIP              6822 11-16-92    VB Code to scan dir's for File.Name
DSL100.ZIP          13670 11-16-92    VB Code for Shell to DOS
DXFDLL.ZIP          56322 11-16-92    DLL to create AutoVAD DXF format files
EDITDEMO.ZIP      22887 11-16-92    Code for several methods of In/Output
ENDPRN.ZIP            5264 11-16-92    Code to control PrintManager
ENUMFONT.ZIP      22495 11-16-92    Call Windows API Font functions
ETDEMO.ZIP            3906 11-16-92    Code for EditTool, which creates custom controls
EZHELP.ZIP          14243 11-16-92    Visual Basic adjunct to add outline help without MS Editor
FBR12C.ZIP          50626 11-16-92    Code for Application launcher
FILBX2.ZIP          11152 11-16-92    Code for FileOpen box like VB's environment
FILEBO.ZIP            5337 11-16-92    Example of old style Dir/File list
FILEBOX.ZIP        11810 11-16-92    FileBox example for VB
FILEBOX2.ZIP        5876 11-16-92    MAK Windows style File_Open box
FILER1.ZIP          19060 11-16-92    Code for Find/View/Delete of files
FINDAP.ZIP          12045 11-16-92    Multiple instance presentation with code
FNDWND.ZIP            6448 11-16-92    Code to find a form
FNTS43.ZIP        256863 11-16-92    Font viewing and cataloging
FNTVIEW.ZIP        18300 11-16-92    Code to control/View Fonts
FOC001.ZIP          16554 11-16-92    How to control focus
FOC002.ZIP          15109 11-16-92    Version 2 of Focus code with new features
FONTRO.ZIP            6410 11-16-92    Print text sideways from VB
FOPEN.ZIP            11549 11-16-92    Advanced FileOpen code

FRAME.ZIP            12441 11-16-92    Draw 3D frames around controls
FVIEW3.ZIP        111538 11-16-92    Font viewer
FXLAUN.ZIP            8670 11-16-92    Code for Metz software menu system
GRAF20.ZIP          53394 11-16-92    Display .BMP and .PCX files 2/16/256 color
GRDRTN.ZIP          11474 11-16-92    Code for grid manipulation
GRID.ZIP              25071 11-16-92    Code to test the properties of controls
GRID2.ZIP            24472 11-16-92    Enhancement to MS's GRID.VBX with better control
GRPH11.ZIP            9833 11-16-92    Custom control, displays clr.bmp
HEADERS1.ZIP    119738 11-16-92    WIN v3.1 Header files for calling Win API's
HLPKEY.ZIP            6229 11-16-92    Sets task-specific F1 hook
HOWTO.ZIP          101312 11-16-92    Very good "how to's" for VB
HPENV.ZIP            24568 11-16-92    Code for advanced Envelope printer
HPESC.ZIP              5348 11-16-92    Text on sending printer esc seq to HP
HUGE.ZIP              24039 11-16-92    VB & DLL for creating Arrays <64
HUGE2.ZIP            24302 11-16-92    Mod's to MS's Huge Array DLL
HUGEARAY.ZIP      19377 11-16-92    DLL with functions for creation and more
HUGEARR.ZIP        23184 11-16-92    HUGEARR.DLL functions for array manipulation <> 64k
HUGSTR.ZIP          43374 11-16-92    Mod to MS's Huge Array DLL to support large strings
HYPER-D.ZIP          4657 11-16-92    VB/DOS Hyper text example
ICBROW.ZIP            4479 11-16-92    Code to control USER.EXE DrawIcon
ICOBMP.ZIP          10591 11-16-92    Convert ICO to BMP in VB
ICONDLL2.ZIP      11766 11-16-92    Program to build Icon DLL of your own
ICONMAK.ZIP          4261 11-16-92    Demonstration of Icon drawing in VB
ICONVIEW.ZIP        7406 11-16-92    Code for Icon viewing and save to ClipBrd
ICONWRKS.ZIP    101297 11-16-92    MAK files to edit and save ICON's
ICOTIMER.ZIP        3514 11-16-92    How to animate the ICON in a minumized form.
ICOXTR.ZIP            4235 11-16-92    Use API to control Icons
IDVB.ZIP              11309 11-16-92    Determine ID's of controls during Dev process
INPOUT.ZIP            7427 11-16-92    InpOut.dll: INP and OUT Replacement
INPUT.ZIP            20480 11-16-92    Custom text box for VB
ISAM-D.ZIP            4584 11-16-92    VB/DOS IndexedSequentialAccessMethod Dbase example
IVB9112.ZIP          7624 11-16-92    VB examples
IVB9201.ZIP          5691 11-16-92    VB examples
IVB9202.ZIP          6912 11-16-92    VB examples
IVB9206.ZIP        13889 11-16-92    Even more good examples
JEOPKE.ZIP          14382 11-16-92    Code for Jeopardy TV show scoring program
JNAL10.ZIP        164097 11-16-92    Information manager
KEYTEST.ZIP          5372 11-16-92    Code for HexaDecimal keypress display
KWI.ZIP                25502 11-16-92    Printer routines
LABTAB.ZIP            8654 11-16-92    Code to use label controls to display data
LANDAU.ZIP          22273 11-16-92    Code for Drag/Drop Cut/Copy/Paste
LBSRCH.ZIP            8964 11-16-92    Code to search list box for match
LB_FUN.ZIP            8011 11-16-92    Code to demonstrate Send/Message API commands
LFORM-D.ZIP          4547 11-16-92    VB/DOS Load form example
LINE-D.ZIP            3924 11-16-92    VB/DOS Line chart example
LISTDR.ZIP            8596 11-16-92    Code to drag text line from location/location
LOOKHERE.ZIP      11453 11-16-92    Font control/Print code
LTBDEM.ZIP          11378 11-16-92    Create linked TextBox/ListBox code
LZSSLI.ZIP          21472 11-16-92    Code for compression of files
METASTUF.ZIP      28672 11-16-92    MetaFile tidbits
METER.ZIP            24251 11-16-92    Shows disk space left
METER1.ZIP            5551 11-16-92    Gauge scroll code
METRIX.ZIP          62353 11-16-92    Custom control analog meter with code
MHCOMM.ZIP        105030 11-16-92    Code for Comm transfers up to 19,200bps with protocols
MHELP.ZIP              7669 11-16-92    DLL with PEEK/POKE/INP/OUT and more

MODAL.ZIP              3881 11-16-92    Example of Windows Modal
MOREAPI.ZIP        13092 11-16-92    Code for additional API functions
MOUREL-D.ZIP        4295 11-16-92    VB/DOS Graphics mouse and keyboard handling example
MOVEFORM.DIZ          908 12-12-92    How to locate a form to the Lower RH screen corner
MOVTXT.ZIP            8709 11-16-92    How to move Pic control / Drag Text control
MSGBOX.ZIP          24957 11-16-92    VB MsgBox Places corresponding code on Clipboard
MSGFIX.ZIP            2983 11-20-92    Advanced MsgBox example
MSJ0992.ZIP        68555 11-16-92    MicroSoft Visual Basic journal September 1992
MSJV6-1.ZIP      236122 11-16-92    MSJ source code vol 6 no 1
MSJV6-4.ZIP      303782 11-16-92    MSJ source code vol 6 no 4
MULPIK.ZIP            8582 11-16-92    Multiple selection Listbox for VB
MULTIPIC.ZIP      10736 11-16-92    Code/.BMPs/ICOs for 3-D buttons
MULTIPIK.ZIP      11993 11-16-92    Multiple selection List box for Visual Basic
MULTSEL2.ZIP      10114 11-16-92    VBX/Code add on for ListBox control (Multi)
MYMEM1.ZIP          40861 11-16-92    Code for memory game
NETPRN.ZIP          12604 11-16-92    Code for linking LAN printers
NOCRUN.ZIP          15196 11-16-92    Code for numbers game with timers
NST14S.ZIP          60648 11-16-92    Code to change startup RLE file
NUMBER.ZIP            5441 11-16-92    Additional math routines for VB
NUMFUN.ZIP            4204 11-16-92    Fun with numbers (Text code)
NUMGAME.ZIP        17416 11-16-92    Code for childrens number game
ORDER.ZIP              7688 11-16-92    Code for professional looking Order form
PAD-D.ZIP              5130 11-16-92    VB/DOS NotePad example
PAINT-D.ZIP          5053 11-16-92    VB/DOS Graphics paint example
PANEL-D.ZIP          4290 11-16-92    VB/DOS Popup control panel example
PDOXDE.ZIP          17783 11-16-92    Two routines for working with PDOX Engine
PDOXENG.ZIP        17919 11-16-92    Example of howto use the Paradox DBF engine w/VB
PHONE-D.ZIP          4356 01-08-93    VB/DOS Phone book example
PIE-D.ZIP              3924 01-08-93    VB/DOS Pie chart example
POLYGO.ZIP            7795 11-16-92    Code for Polygon drawing in sizes/colors
PRCLP2.ZIP            6122 11-16-92    Print contents of ClipBoard
PRNTCB.ZIP          13089 11-16-92    Print clipboard (MicroSoft source)
PROADD.ZIP          91904 11-16-92    Efficient way to use MS's Pro Toolkit
SCROLL2.ZIP        19580 11-16-92    Scrolling Demonstration
VBCTRL10.ZIP    137524 11-16-92    Set of custom controls (Includes VBX's and Code)
VBDB.ZIP              81540 11-16-92    Data Base engine that supports dBase files in VB
VBDB110.ZIP        82401 11-16-92    VB dB engine w/src
VBDEVERS.ZIP      11419 11-16-92    List of developers and publishers
VBDIA.ZIP              9564 11-16-92    Arrow control(DLL and Code included)
VBDOS.ZIP            12474 11-16-92    DLL to call DOS functions with source code
AGIGO2.ZIP            6276 01-17-93    VBWIN-How to search records in VB 1.0 / 2.0
MATCH.ZIP              6162 01-17-93    VBWIN - How to do extensive pattern matching in VB
MHCTL.ZIP              3432 01-17-93    VBWIN-How to get a menu's ControlHandle
NOMO3.ZIP              6953 01-17-93    VBDOS-Resident int 104 BIOS extension for VBDOS v1.0
OVLRUN.ZIP            5388 01-17-93    VBDOS-Bug Fix, Use of "RUN ProgramName$" w/Overlays
VB-OOP.ZIP          10206 01-17-93    VBWIN-OOP for VB (Object VB)

VERSION 2.00
Begin Form Traffic
 Caption = "Traffic Light Simulation"
 Height = 4500
 Icon = TRAFFIC.FRX:0000
 Left = 2175
 LinkTopic = "Form1"
 ScaleHeight = 4095
 ScaleWidth = 3345
 Top = 1395
 Width = 3465
 Begin Timer Timer1
 Left = 2880
 Top = 2160
 End
 Begin CommandButton Exit
 Caption = "Exit!"
 Height = 495
 Left = 720
 TabIndex = 4
 Top = 2760
 Width = 1815
 End
 Begin CommandButton About
 Caption = "About"
 Height = 495
 Left = 720
 TabIndex = 3
 Top = 2160
 Width = 1815
 End
 Begin CommandButton Toggle
 Caption = "Start Simulation"
 Height = 495
 Left = 720
 TabIndex = 2
 Top = 1560
 Width = 1815
 End
 Begin Image Red
 Height = 480
 Left = 2880
 Picture = TRAFFIC.FRX:0302
 Top = 1080
 Visible = 0 'False
 Width = 480
 End
 Begin Image Yellow
 Height = 480
 Left = 2880
 Picture = TRAFFIC.FRX:0604
 Top = 600
 Visible = 0 'False

 Width = 480
 End
 Begin Image Green
 Height = 480
 Left = 2880
 Picture = TRAFFIC.FRX:0906
 Top = 120
 Visible = 0 'False
 Width = 480
 End
 Begin Label Label2
 Alignment = 2 'Center
 Caption = "E/W"
 Height = 255
 Left = 1800
 TabIndex = 1
 Top = 360
 Width = 495
 End
 Begin Label Label1
 Alignment = 2 'Center
 Caption = "N/S"
 Height = 255
 Left = 840
 TabIndex = 0
 Top = 360
 Width = 495
 End
 Begin Image E_W
 Height = 480
 Left = 1800
 Picture = TRAFFIC.FRX:0C08
 Top = 720
 Width = 480
 End
 Begin Image N_S
 Height = 480
 Left = 840
 Picture = TRAFFIC.FRX:0F0A
 Top = 720
 Width = 480
 End
End
'Here is where we set our variables.
'The Dim Shared statement allows these variables to be called
'from anywhere in this form module

Dim Shared ToggleFlag As Integer 'Boolean True/False (Is the simulation running?)
Dim Shared NS_Go As Integer 'Boolean True/False (Is the North/South light the active
one?)
Dim Shared LightState As Integer 'Green = 1 Yellow = 2

'Here we set two constant values. These numbers can not be changed
'by the program. Constants are nice because you can simply refer
'to them by name. This makes much more sense when you are trying

'to read the code (if you give them meaningful names).

Const GreenTime = 5000 'Time a green light is on
Const YellowTime = 2000 'Time a yellow light is on

Sub About_Click ()
'This event is called whenever the user clicks on the second
'button.

 AboutBox.Show 'Show the about box
End Sub

Sub Exit_Click ()
'This event is called whenever the user clicks on the third
'button --- End the program!

 Unload Me 'Unload the form and release the memory
 'The "Me" in the above statement refers to
 'the current form. This is new in VB 2.0
 End 'End the program
End Sub

Sub Form_Load ()
'Here we set our program defaults. This routine is run whenever
'we load the form. Since this is the first form in our program,
'everything is setup here.

 Timer1.Enabled = False 'Turn off the timer
 Toggle.Caption = "Start Simulation" 'Set the caption for button1
 ToggleFlag = False 'Set ToggleFlag to the default FALSE
End Sub

Sub Timer1_Timer ()
'This is the timer event. This event is called when the
'number of milliseconds set in the TimerX.Interval property
'has been reached.

 If NS_Go = True Then 'If the North/South light is
 'the active light
 If LightState = 1 Then 'Green Light
 LightState = 2 'Set up for Yellow
 N_S.Picture = Yellow.Picture 'change the light to yellow
 Timer1.Interval = YellowTime 'set the timer to YellowTime
 Else 'LightState MUST = 2 (Yellow)
 LightState = 1 'Reset LightState to 1 (Green)
 N_S.Picture = Red.Picture 'Turn the N_S light to Red
 E_W.Picture = Green.Picture 'and the E_W light to green
 Timer1.Interval = GreenTime 'Reset the timer to GreenTime
 NS_Go = False 'Set East/West as the active light
 End If
 Else
 If LightState = 1 Then 'Green Light
 LightState = 2 'Set up for yellow
 E_W.Picture = Yellow.Picture 'Change the light to Yellow
 Timer1.Interval = YellowTime 'Set the timer to YellowTime

 Else 'LightState MUST = 2 (Yellow)
 LightState = 1 'Reset LightState to 1 (Green)
 E_W.Picture = Red.Picture 'Turn the E_W light to Red
 N_S.Picture = Green.Picture 'and the N_S light to Green
 Timer1.Interval = GreenTime 'Reset the timer again to GreenTime
 NS_Go = True 'Set North/South as the Active light
 End If
 End If
End Sub

Sub Toggle_Click ()
'This event is called whenever the user clicks on the
'"Start Simulation/Stop Simulation" button.
 If ToggleFlag = False Then 'If simulation is stopped...
 ToggleFlag = True 'Set the ToggleFlag to TRUE
 Toggle.Caption = "Stop Simulation" 'Set the caption on the button
 Timer1.Interval = GreenTime 'Set the timer interval to GreenTime
 NS_Go = True 'Make the North/South light the active one
 LightState = 1 'Set LightState to 1 (Green)
 N_S.Picture = Green.Picture 'Make sure that we are showing a Green Light
 E_W.Picture = Red.Picture 'and Red Light in the proper places
 Timer1.Enabled = True 'Start the simulation timer
 Else
 ToggleFlag = FLASE 'Set the ToggleFlag to False
 Timer1.Enabled = False 'Turn off the timer
 Toggle.Caption = "Start Simulation" 'Change the button caption back
 End If
End Sub

VERSION 2.00
Begin Form Aboutbox
 BackColor = &H00FF0000&
 Caption = "About Traffic Light Simulation"
 Height = 3525
 Left = 1020
 LinkTopic = "Form2"
 ScaleHeight = 3120
 ScaleWidth = 4965
 Top = 1770
 Width = 5085
 Begin CommandButton Command1
 Caption = "Return"
 Height = 495
 Left = 1680
 TabIndex = 2
 Top = 2280
 Width = 1695
 End
 Begin Label Label2
 Alignment = 2 'Center
 BackColor = &H00FF8080&
 BackStyle = 0 'Transparent
 Caption = "This program is released into the PUBLIC DOMAIN by G.D. Walters and
Basically Visual Magazine."
 ForeColor = &H00FFFFFF&
 Height = 735
 Left = 600
 TabIndex = 1
 Top = 1320
 Width = 3975
 End
 Begin Label Label1
 Alignment = 2 'Center
 BackColor = &H00FFC0C0&
 BackStyle = 0 'Transparent
 Caption = "Traffic Light Simulation program was written by G.D. Walters for
Basically Visual Magazine Issue 2 as part of the Beginning Basics column."
 ForeColor = &H00FFFFFF&
 Height = 855
 Left = 240
 TabIndex = 0
 Top = 360
 Width = 4455
 End
End
'This is the ABOUTBOX variable declaration area...
'We have none to declare!

Sub Command1_Click ()
'Unload the form and release the memory

 Unload Me '"Me" refers to the current form. New in VB 2.0

End Sub

TRAFFIC.FRM
ABOUTBOX.FRM
ProjWinSize=152,402,248,215
ProjWinShow=2
Title="TRAFFIC"
ExeName="TRAFFIC.EXE"
Path="C:\VB"

BINARY is a 1 or 0.    Another way to look at it is TRUE (1) and FALSE (0).    Visual Basic
defines TRUE as -1 and FALSE as 0.    However, if you simply think in TRUE and FALSE, you
will be OK.

Enter our first Ca$h contest
    Show off your code and take a chance at winning our first Cash contest.
The contest is open to any Visual Basic for Windows programmer. You must create your application using
Visual Basic for Windows v1.0 or v2.0, and all code submitted must be your own original work.

    Here are the rules, and legalities:                     

 > The application must be your own work. 
 >    It must be created in Visual Basic for Windows version 1.0 or 2.0.             
 >    You may use only one Form, and or one Module for the application.                 
 >    The compiled EXE must be 20k or less in size. You do not have to               
            include the EXE with your entry.             
 * Original source code remains the property of its creator.

    We are not sure how big the Cash pot will be as of this printing because it is still growing. Every effort is
being made to make this pot attractive and we assure you there will be a handsome cash award for the
winner. The Winner will be selected by a panel of Visual Basic for Windows developers from several parts
of the U.S.. Entry deadline is March 15th 1993 and the Winner will be announced in the April 1993 issue
of Basically Visual Magazine.
    note: The contest is void where prohibited by law. Taxes on the prize money is the sole responsibility of
the prize winner.

 FORWARD ALL ENTRIES TO:

    The Light House
      1:2380/410      USR HST 14.4
      Flatrock, MI
or
      The Programmer's Pit BBS
      1:270/612      V32Bis
      York, PA

or MAIL YOUR ENTRY TO:
   
      The Light House
        23260 Woodruff Suite #4

        Flatrock, MI      48134   

OR
      The Programmer's Pit BBS
      P.O. Box 1214
      York, PA    17405-1214

